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Abstract 11 

CO2 emissions from peatlands exhibit substantial spatial and temporal variability due to their 12 

heterogeneous nature, presenting challenges to identify their underlying drivers and to accurately 13 

quantify and model CO2 fluxes. Here, we integrated field measurements with Unmanned Aerial Vehicle 14 

(UAV)-based multi-sensor remote sensing to investigate soil respiration across a temperate peatland 15 

landscape. Our research addressed two key questions: (1) How do environmental factors control the 16 

spatial-temporal distribution of soil respiration across complex landscapes? (2) How do hot spots and hot 17 

moments of biogeochemical processes influence landscape-level CO2 fluxes? We find that dynamic 18 

variables (i.e., soil temperature and moisture) play significant roles in shaping CO2 flux variations, 19 

contributing 43 % to seasonal variability and 29 % to spatial variance, followed by semi-dynamic 20 

variables (i.e., NDVI and root biomass) (19 % and 24 %). Relatively static variables (i.e., soil organic 21 

carbon (SOC) stock and C/N ratio) have a minimal influence on seasonal variation (2 %) but contribute 22 

more to spatial variance (10 %). Additionally, predicting time series of CO2 fluxes is feasible by using 23 

key environmental variables (test set: R2 = 0.74, RMSE = 0.57 μmol m⁻² s⁻¹), while UAV remote sensing 24 

is an effective tool for mapping daily soil respiration (test set: R2 = 0.75, RMSE = 0.54 μmol m⁻² s⁻¹). By 25 

the integration of in-situ high-resolution time-lapse monitoring and spatial mapping, we find that despite 26 

occurring in 10 % of the year, hot moments contribute 28 %–31 % of the annual CO₂ fluxes. Meanwhile, 27 

hot spots—representing 10 % of the area—account for 20 % of CO₂ fluxes across the landscape. Our 28 

study demonstrates that integrating UAV-based remote sensing with field surveys improves the 29 

understanding of soil respiration mechanisms across timescales in complex landscapes, providing 30 

insights into carbon dynamics and supporting peatland conservation and climate change mitigation 31 

efforts. 32 

Keywords: Peatlands, Soil respiration, Greenhouse gas (CO2) emission, CO2 hot spots, CO2 hot 33 

moments, Multi-sensor UAV remote sensing, Global warming  34 
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1 Introduction 35 

Peatlands are globally distributed ecosystems that store approximately 600 Gt of carbon (Yu et al., 2010), 36 

despite covering less than 4 % of the Earth’s land surface (Xu et al., 2018). However, rising concerns 37 

exist over peatlands shifting from carbon sinks to carbon sources due to the impact of climate change 38 

(Dorrepaal et al., 2009; Huang et al., 2021; Hopple et al., 2020), land use/cover conversion (Leifeld et 39 

al., 2019; Deshmukh et al., 2021; Prananto et al., 2020), and other disturbances (Wilkinson et al., 2023; 40 

Turetsky et al., 2015).  In Europe, it has been reported that nearly half of the peatlands are suffering 41 

degradation, primarily due to drainage for agricultural or forestry activities (Leifeld et al., 2019; Unep, 42 

2022). As a consequence, European peatlands currently emit up to 580 Mt CO2-eq per year across the 43 

continent (Unep, 2022). Given the critical role of the peatland ecosystem in the terrestrial carbon cycle, 44 

it is therefore important to understand the mechanisms driving carbon fluxes and their responses to 45 

climate change and human disturbances. 46 

Soil respiration in peatlands is influenced by a combination of biotic and abiotic factors, such as soil 47 

temperature and moisture  (Treat et al., 2014; Fang and Moncrieff, 2001; Juszczak et al., 2013; Swails et 48 

al., 2022; Hoyt et al., 2019; Evans et al., 2021), vegetation and root biomass (Acosta et al., 2017; Wang 49 

et al., 2021), and soil organic matter quality (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). CO2 50 

emissions from peatlands are highly variable over space and time, presenting challenges to accurately 51 

quantify and model carbon fluxes. This may partial because peatlands are characterized by a unique 52 

microtopography, including features such as soil benches and depressions (Moore et al., 2019). These 53 

small-scale variations create differences in hydrology, temperature, biogeochemistry, and vegetation 54 

(Harris and Baird, 2019), leading to substantial spatial differences in the factors that control CO₂ fluxes 55 

and the formation of hot spots with elevated CO2 emissions (Kelly et al., 2021; Becker et al., 2008; 56 

Mcclain et al., 2003; Frei et al., 2012; Kim and Verma, 1992). For instance, the peat surface temperature 57 

differences within a 10 m x 10 m plot characterized by hummock and hollow features can be 20°C 58 

(Rhoswen et al., 2018). In addition, peatlands experience highly variable weather conditions, which can 59 

trigger periods of disproportionately high CO2 fluxes—often referred to as 'hot moments'—in response 60 

to transient environmental changes, such as sudden shifts in temperature, rainfall events, or fluctuations 61 

in the water table (Anthony and Silver, 2023). High CO2 emissions occur from discrete areas in space 62 

(hot spots) and over short periods (hot moments), and may disproportionately contribute to the overall 63 
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fluxes (Anthony and Silver, 2023; Fernandez-Bou et al., 2020).  Most studies have examined the 64 

mechanisms and contributions of hot spots and hot moments of other greenhouse gases (N2O, CH4) in 65 

agricultural and forestry ecosystems (Krichels and Yang, 2019; Anthony and Silver, 2021; Kannenberg 66 

et al., 2020; Leon et al., 2014; Fernandez-Bou et al., 2020), while research on CO2 emission hot spots 67 

and hot moments in peatlands remains limited  (Anthony and Silver, 2021, 2023). 68 

Identifying and quantifying hot spots and hot moments in peatlands is challenging, requiring large-scale, 69 

continuous, long-term observations. Currently, most studies on peatland soil respiration rely on point 70 

measurements taken at intervals of half a month to one month, primarily during daytime (e.g., Wright et 71 

al. (2013); Bubier et al. (2003); Kim and Verma (1992); Danevčič et al. (2010)). This spatial-temporal 72 

limitation hinders the effective detection of hot spots and hot moments. Some studies attempted to 73 

extrapolate point data using land-use maps (Van Giersbergen et al., 2024; Webster et al., 2008; Mcnamara 74 

et al., 2008), but uncertainties in landscape-scale fluxes increase as the number of measurement locations 75 

decreases (Arias-Navarro et al., 2017; Wangari et al., 2022; Wangari et al., 2023). While automated 76 

chamber systems improve temporal resolution and help capture hot moments (Hoyt et al., 2019; Anthony 77 

and Silver, 2023), they are typically limited to a few sampling points, and scaling up is constrained by 78 

significant resource demands. Eddy covariance towers measure net ecosystem exchange over large areas 79 

by recording high-frequency CO2 concentrations and air turbulence, providing insights into temporal 80 

variations at the ecosystem level (Rey-Sanchez et al., 2022; Abdalla et al., 2014). However, the 81 

underlying controlling factors and mechanisms at the process level are difficult to infer due to the large 82 

spatial footprint. In addition, they may not accurately represent the spatial heterogeneity of peatlands 83 

(Lees et al., 2018). These limitations highlight the need for complementary approaches to estimate CO2 84 

fluxes at the landscape scale with methods adapted for heterogeneous peatland ecosystems.  85 

Several studies have integrated satellite-based remote sensing datasets with on-site chamber 86 

measurements to model landscape-scale CO2 fluxes (e.g., Junttila et al. (2021); Wangari et al. (2023); 87 

Lees et al. (2018); Azevedo et al. (2021)). Remote sensing datasets on topography and vegetation 88 

parameters serve as proxies for soil moisture, vegetation cover, and nutrient availability, enabling large-89 

scale CO2 emission estimates within peatlands (Lees et al., 2018). However, this approach is somewhat 90 

limited by coarse spatial (10 m to 1 km) and temporal (1 to 16 days) resolutions, which may overlook 91 
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hot spots and hot moments, leading to potential over- or underestimations of CO2 fluxes in heterogeneous 92 

peatlands (Kelly et al., 2021; Simpson, 2023). This shortcoming might be overcome by using unmanned 93 

aerial vehicles (UAVs) equipped with different kinds of sensors such as Red-Green-Blue (RGB), 94 

multispectral, thermal infrared, and Light Detection and Ranging (LiDAR). UAVs offer flexible 95 

deployment and capture high-resolution spatiotemporal data (1 cm to 1 m, minutes to months) (Minasny 96 

et al., 2019) which makes them particularly suitable for monitoring complex peatland dynamics and 97 

detecting hot spots and hot moments. Thus far, UAVs have proven to be reliable tools for peatland 98 

applications, including vegetation mapping (Steenvoorden et al., 2023), topographic reconstruction 99 

(Harris and Baird, 2019), peat depth and carbon storage estimation (Li et al., 2024), and moisture 100 

monitoring (Henrion et al., 2025). In a recent study, Kelly et al. (2021) utilized UAV-derived land surface 101 

temperature to estimate ecosystem respiration of a hemi-boreal fen in southern Sweden, and Pajula and 102 

Purre (2021) and Walcker et al. (2025) employed UAV-based multispectral vegetation indices to map 103 

ecosystem CO2 flux at high resolution. These recent studies demonstrated the great potential of UAVs 104 

for linking CO2 fluxes with environmental factors at a very high resolution, although they mainly focused 105 

on data from a single sensor. Few studies have explored the fusion of UAV-derived data from multiple 106 

sensors for mapping soil respiration across peatland landscapes. 107 

In this study, we integrate multi-sensor UAV-based remote sensing with traditional field surveys to 108 

investigate soil respiration across a temperate peatland landscape, located in the Belgian Hautes Fagnes. 109 

As one of the largest and most ancient peatlands in Western Europe, the Belgian Hautes Fagnes represents 110 

an important ecosystem for studying peatland carbon fluxes due to its sensitivity to climate change and 111 

hydrological dynamics. Our research addresses two key questions: (1) What controls the nature and 112 

strength of the relationship between soil respiration and environmental factors across complex peatland 113 

landscapes and across spatial-temporal scales? (2) How do hot spots or hot moments of biogeochemical 114 

processes influence landscape-level carbon fluxes? More specifically, our study has three main objectives. 115 

First, we aim to identify the factors driving seasonal and spatial variations in soil respiration. Second, we 116 

assess the potential for linking environmental factors to CO2 flux at high spatial and temporal resolutions. 117 

Third, we discuss the timing and location of hotspots and hot moments, assessing their contributions to 118 

overall CO2 flux budgets.  119 
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2 Materials and methods 120 

2.1 Study site  121 

The Belgian Hautes Fagnes plateau, part of the Stavelot-Venn Massif, is located in eastern Belgium 122 

(Figure 1a). This elevated landscape experiences a humid climate, with mean annual air temperature and 123 

precipitation being approximately 6.7 °C and 1439.4 mm (period: 1971-2000), respectively (Mormal and 124 

Tricot, 2004). The peatlands in this region cover an area of 37.50 km2, which primarily consist of raised 125 

bogs formed since the Late Pleistocene (Frankard et al., 1998). Our study site (50.49 N, 6.05 E; ~0.30 126 

km2) is located in the upper valley of the Hoëgne River peatland region (Figure 1a). The site is 127 

characterized by a distinct SE-NW oriented topographic gradient, with a clear transition from a low-relief 128 

plateau to steep hillslopes and then to the floodplain of a broad river valley (Sougnez and Vanacker, 129 

2011). The area was drained and planted with spruces in 1914 and 1918. The plantations were 130 

progressively cleared between 2000 and 2016; since 2017, the site has been restored through reforestation 131 

with native hardwood species such as Betula pubescens and Quercus robur. Figure 1b shows main 132 

vegetation types across this landscape. An observation station of the Royal Meteorological Institute of 133 

Belgium (Mont Rigi, 50.51 N, 6.07 E) situated 3.07 km from the study site, records rainfall data every 134 

10 minutes.  135 

 136 

Figure 1. Maps showing the field-sampling locations (a) and land cover types (b) in the study area. Details on the 137 

land cover map are provided in our previous work (Li et al., 2024).  138 
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2.2 CO2 flux measurement campaigns 139 

Soil surface CO2 flux measurements were conducted at five slope positions along the middle part of the 140 

site (Figure 1a). A portable infrared gas analyzer with an automated closed dynamic chamber (LI-8100A 141 

system, LI-COR, United States) was used to monitor CO2 fluxes at 33 sites biweekly from December 142 

2022 to March 2024 (Figure S1). At each slope position, six collars (20 cm diameter) were installed 143 

randomly, spaced 1–5 meters apart, to capture small-scale spatial variability. While at the shoulder, 144 

considering the heterogeneous soil water conditions, six collars were installed in drier areas and another 145 

three in wetter areas. All vegetation within the collars was removed. During each campaign, monitoring 146 

was conducted between 9:00 and 16:00. At each site, the CO2 flux (μmol m-2 s-1) in the chamber was 147 

measured for 2.5 minutes per observation. Simultaneously, soil surface temperature (0–10 cm) and 148 

volumetric water content (VWC) during each CO2 measurement were recorded using a T-handled type-149 

E thermocouple sensor (8100-201, LI-COR, United States) and a portable five-rod, 0.06 m long 150 

frequency domain reflectometry (FDR) probe system (ML2x, Delta-T, United Kingdom), respectively. 151 

However, CO2 measurements were not always possible due to technical issues and bad weather 152 

conditions, resulting in a total of 666 valid measurements. In addition, a pair of soil CO2 forced diffusion 153 

probes (eosFD, EOSense, United States) were installed near LI-8100A collars from 24 April 2024 to 8 154 

November 2024 (Figure S1). These probes, consisting of a soil node and a reference node, are based on 155 

a membrane-based steady-state approach and can measure CO2 flux every 5 minutes (Risk et al., 2011). 156 

During this period, the probes continuously monitored CO2 flux at different slope positions (Figure S1), 157 

resulting in a total of 39476 valid flux measurements.  158 

2.3 Temperature and soil moisture monitoring 159 

The temporal evolution of soil temperature and moisture along the middle part was monitored using 160 

Teros12 sensors (Meter Group, München, Germany), with two replicates per slope position, spaced 5 161 

meters apart (Figure 1a) (Henrion et al., 2025). These sensors recorded data at a depth of 10 cm from 14 162 

October 2022 to 28 October 2024, every 10 minutes. Between the two replicates of each slope position, 163 

a station positioned ~1.4 m above the ground recorded air temperature every ten minutes. Additionally, 164 

ten soil temperature data loggers (EL-USB-1-PRO, Lascar, United Kingdom) were installed primarily 165 

along two evenly spaced transects parallel to the main slope, at a depth of 10 cm (Figure 1a). These 166 
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loggers recorded soil temperatures at the same frequency as Teros12 sensors from 21 March 2023 to 8 167 

November 2024.  168 

2.4 Soil sampling and laboratory analysis 169 

After completing all gas sampling campaigns, 33 disturbed soil samples (0-10 cm depth) were collected 170 

within LI8100A collars at the five slope positions between 30 July and 15 October 2024. An Emlid Reach 171 

RS 2 GPS device with centimeter-level precision was used to record the sampling site locations, using a 172 

PPK solution with the Belgian WALCORS network. The samples were stored in a refrigerator until 173 

laboratory analysis. A subset of the samples was oven-dried at 80 °C for 24 hours (Dettmann et al., 2021), 174 

then crushed and ground into a fine powder for soil organic carbon (SOC) and total nitrogen content (TN) 175 

analysis (928 Series, LEGO, United States). Roots and litter were removed using tweezers during the 176 

pre-processing procedure. We tested the presence of inorganic carbon of each sample by adding one drop 177 

of 10 % HCl but found that no inorganic carbon was present in the samples. A subset of fresh samples 178 

was used for root biomass analysis. The fresh soil samples were weighed and placed in a 1 mm sieve, 179 

then rinsed with water to collect the roots. The washed roots were dried in an oven at 80 °C for 48 hours 180 

and then weighed to calculate their dry biomass. 181 

2.5 UAV data acquisition and imagery processing 182 

During the CO2 flux monitoring period, we conducted regular UAV flights across the study area to collect 183 

high-resolution spatial data (Figure S1). A DJI Matrice 300 RTK was equipped with four different sensors: 184 

(i) a Red-Green-Blue (RGB) camera (DJI Zenmuse P1 camera, 35 mm and 45 MP), (ii) a multispectral 185 

camera (MicaSense RedEdge-M camera with five discrete spectral bands: blue (475 nm), green (560 nm), 186 

red (668 nm), rededge (717 nm), and near-infrared (842 nm), along with a downwelling light sensor), 187 

(iii) a LiDAR scanner (DJI Zenmuse L1, integrated with a 20-MP camera with a 1-inch CMOS sensor) 188 

and (iv) a thermal infrared camera (TeAX, featuring FLIR Tau2 cores and ThermalCapture hardware). 189 

Similar flight patterns and altitudes were used for the UAV missions as in our previous work (Li et al., 190 

2024). In total, one RGB and one LiDAR dataset collected on 7 June 2023, were used in this study and 191 

ten multispectral and ten thermal datasets collected between 13 April 2023 and 13 May 2024. 192 

The raw multispectral images were processed in the Pix4D mapper software (Pix4D S.A., Lausanne, 193 
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Switzerland) to generate reflectance maps (resolution: 6 cm) of the five spectral bands of the study area. 194 

We calculated the Normalized Difference Vegetation Index (NDVI) across the 10 maps from the 195 

monitoring period (Table S1). The raw thermal infrared video streams were converted into RJPG images 196 

using ThermoViewer version 3.0.26 (TeAX, 2022). Subsequently, the thermal images were processed 197 

with the Pix4D mapper to generate land surface temperature (LST) maps (resolution: 12 cm), which were 198 

used for soil temperature mapping (Text S1, Figure S2, Table S2). The RGB photos were processed in 199 

DJI Terra V4.0.10 (DJI, 2023) to generate an orthomosaic image with a resolution of 1.26 cm. The raw 200 

LiDAR data was processed in DJI Terra to provide a Digital Terrain Model (DTM; .tif file) with a 201 

resolution of 15 cm, which was used for generating daily air temperature maps (Text S1) and terrain 202 

wetness index (TWI) (Text S2). The variables derived from the four types of images were summarized 203 

in Table S1. 204 

2.6 Statistical analysis 205 

All data analyses were conducted in RStudio (v4.1.2). All timestamps in this study were converted to 206 

Coordinated Universal Time (UTC) to ensure consistency across datasets. Group differences were 207 

assessed by the one-way analysis of variance (ANOVA) using the stats package. When ANOVA detected 208 

a significant effect (p < 0.05), Tukey's Honestly Significant Difference (HSD) post-hoc test was 209 

performed to determine which groups differed significantly from each other. Pearson correlation analysis 210 

was performed using the corrplot package (Murdoch and Chow, 1996). The linear mixed-effects models 211 

used to identify factors controlling spatial- temporal variations of CO2 flux, as well as time series 212 

simulation and mapping are introduced below.  213 

2.6.1 Models to explain spatial-temporal variations in CO2 flux  214 

We utilized linear mixed-effects models to assess the impacts of both static and dynamic environmental 215 

factors on the spatial and seasonal variability of CO2 fluxes. This is because mixed models integrate both 216 

fixed and random effects, which provide a robust framework for analyzing data with non-independent 217 

structures (Pinheiro and Bates, 2000). The model was performed using the lme4 package (Bates et al., 218 

2015), with the natural logarithm of CO2 flux observations as a response. The CO2 fluxes data are often 219 

characterized by extreme values and right-skewed distribution, and a lognormal assumption for CO2 220 
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fluxes could better account for the influences of extreme values on the overall distribution (Wutzler et 221 

al., 2020). The mixed-effects models were defined as: 222 

𝑦𝑖𝑗  =  𝛽0 + 𝛽1𝑥𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑖𝑗 + 𝑏0𝑗 + 𝑏1𝑗𝑧𝑖𝑗 + ⋯ + 𝜖𝑖𝑗                (1) 223 

Where: 224 

• 𝑦𝑖𝑗 is the dependent variable (i.e., ln (CO2 flux), unit: μmol m-2 s-1) for observations 𝑖 in group 225 

𝑗. 226 

• 𝛽0, 𝛽1,…, 𝛽𝑝 are fixed-effect coefficients.  227 

• 𝑥𝑖𝑗  is the fixed-effect variable (independent variable). 228 

• 𝑏0𝑗 , 𝑏1𝑗 ,… are random-effect coefficients associated with group 𝑗 , which account for 229 

variability across groups.  230 

• 𝑧𝑖𝑗  is the random-effect variable. 231 

• 𝜖𝑖𝑗  is the residual error term. 232 

The fixed-effect predictors were categorized into three groups: 233 

• Static variables: SOC stock, and the ratio of SOC content to nitrogen content (C/N ratio). 234 

• Semi-dynamic variables: root biomass and NDVI. 235 

• Dynamic variables: soil temperature and soil moisture at 0–10 cm depth. 236 

Estimates for NDVI were extracted from the maps by retrieving the value of the 33 CO2 flux observation 237 

sites and the SOC stock values were extracted from the a local high resolution (0.15 m) SOC stock map 238 

(Li et al., 2024). The sites were included as random effects in the seasonal pattern model to account for 239 

repeated measurements at the same locations during the monitoring period, whereas slope positions were 240 

treated as random effects in the spatial pattern model. Independent variable coefficients, Intraclass 241 

Correlation Coefficient (ICC), coefficients of determination (marginal R² and conditional R²), Root Mean 242 

Square Error (RMSE), and Akaike Information Criterion (AIC) were extracted using the modelsummary 243 

package after running each model. The ICC quantifies the proportion of variance explained by a grouping 244 

(random) factor in multilevel data; values close to 1 indicate high similarity within groups, while values 245 

near 0 suggest that grouping conveys little to no information (Nakagawa et al., 2017; Shrout and Fleiss, 246 

1979). The marginal R², represents the variance explained by fixed effects alone, and conditional R² 247 

represents the variance explained by both fixed and random effects (Pinheiro and Bates, 2000). The 248 
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relative importance of each independent variable was obtained using the glmm.hp package. To assess 249 

multicollinearity in regression analysis, the car package was used to calculate the variance inflation 250 

factor (VIF) (Fox and Monette, 1992).  251 

2.6.2 Modelling hourly CO2 flux  252 

The mixed-effects model was utilized to simulate the time series of CO2 fluxes at different slope positions. 253 

Here, the slope position was included as random variable, and the natural logarithm of CO2 flux (hourly) 254 

was set as a response. We utilized CO2 fluxes data measured by both the LI8100A system and eosFD 255 

probes. Specifically, we randomly selected a number of 30 observations from the eosFD probes at each 256 

slope position to reduce data redundancy from high-frequency sampling. Afterwards, we applied 257 

weighting to adjust the remaining imbalance in data density between the high-frequency eosFD 258 

monitoring and low-frequency LI8100A measurements, ensuring both data sources contributed 259 

proportionally to the model. The independent variables included hourly soil temperature (10 cm depth), 260 

volumetric soil moisture (VWC, 10 cm depth), and air temperature (1.4 m height), considering their 261 

importance in explaining the seasonal and diurnal patterns of CO2 flux.  262 

As in our previous work (Li et al., 2024), we divided the dataset into a training set (70 %) and a test set 263 

(30 %) using K-means clustering to minimize biases that could arise from random sampling (Hair et al., 264 

2010). The models were trained on the training set, and the simulation accuracy was validated using the 265 

test dataset. The coefficient of determination (R2) and RMSE were used to assess the quality of the model 266 

fit. Finally, we made simulations of the time series of hourly CO2 flux for different slope positions from 267 

1 May 2023 to 30 April 2024. Furthermore, we identified CO2 emission hot moments based on the 268 

description in Section 2.6.4. 269 

2.6.3 Mapping daily CO2 flux  270 

The linear mixed-effects model was utilized to map the spatial distribution of daily CO2 fluxes across the 271 

landscape, with daily soil temperature (10 cm depth), corrected daily TWI, and SOC stock being 272 

considered as fixed-effect variables and gas sampling sites being included as random variables. The daily 273 

CO2 flux model training, testing procedures, and evaluation of model fit followed the same approach 274 

detailed in Section 2.6.2. We then applied the trained model to predict the daily CO2 flux of the landscape 275 
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from 1 May 2023 to 30 April 2024. Additionally, we calculated the mean daily soil CO2 flux maps for 276 

each season and the entire year. Based on these predictions, we identified hot spots for each day by the 277 

methods described below. 278 

2.6.4 Quantifying hot moments and hot spots of CO2 flux 279 

In previous studies, percentiles have been used as thresholds for identifying heat waves (e.g., (Meehl and 280 

Tebaldi, 2004): 97.5th percentile), soil heat extremes (e.g., García-García et al. (2023): 90th percentile), 281 

hot spots of N2O emissions (e.g., Mason et al. (2017): median plus three times the interquartile range), 282 

and hot spots of CO2 emissions (e.g., Wangari et al. (2023): median plus the interquartile range). In this 283 

study, we tested different methods and selected the 90th percentile as the threshold of both hot moments 284 

and hot spots to balance capturing extreme CO₂ emissions while maintaining a sufficient sample size. To 285 

capture the hot moments, we calculated a threshold for each slope position separately using its own 286 

dataset. For hot spots, we determined a daily threshold based on each map. 287 

  288 
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3 Results 289 

3.1 Spatial and temporal patterns of CO2 flux 290 

During the monitoring period, the CO2 emissions show large spatial and seasonal variations across the 291 

landscape. The CO2 fluxes at the summit (3.16 ± 3.25 μmol m-2 s-1) and shoulder (dry: 2.81 ± 3.22 μmol 292 

m-2 s-1, wet: 2.33 ± 2.36 μmol m-2 s-1) slope positions were significantly higher than that of footslope 293 

(1.25 ± 1.00 μmol m-2 s-1) and backslope (1.11 ± 1.03 μmol m-2 s-1) (p < 0.05) (Figure 2a). Furthermore, 294 

significant differences were observed when grouping the data into three vegetation covers: CO2 295 

emissions from Vaccinium myrtillus were lower than those from Juncus acutus, with mean ± sd values 296 

of 1.59 ± 1.43 μmol m-2 s-1, and 2.33 ± 2.36 μmol m-2 s-1, respectively (Figure 2b) (p < 0.05). However, 297 

the CO2 fluxes under Molinia caerulea displayed large variations (0.02~20.1 μmol m-2 s-1), and no 298 

significant differences were found compared to the other two vegetation types. The CO2 flux data 299 

indicated large CO2 emissions from June to September (3.65 ± 2.68 μmol m-2 s-1), which can be 8.11 300 

times higher than that from winter and early spring (0.45 ± 0.40 μmol m-2 s-1) (Figure 2c). CO2 emissions 301 

in May and October were at a moderate level.  302 
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 303 

Figure 2. Boxplot of CO2 flux (μmol m-2 s-1) across different slope positions (a), vegetation types (b), and sampling 304 

dates (c), using data from the LI8100 A system recorded between 2023-02-13 and 2024-03-13. (a), CO2 flux data of 305 

each box were from all dates, and Shoulder (w) and Shoulder (d) indicate shoulder wet and shoulder dry areas, 306 

respectively. (b), CO2 flux data of each box were from all dates, and Myrtillus, Molinia and Juncus indicate 307 

Vaccinium myrtillus, Molinia caerulea and Juncus acutus, respectively. (c), CO2 flux data of each box were from all 308 

slope positions. The edges of each box represent the first quartile (Q1) and third quartile (Q3), while the line inside 309 

the box indicates the median CO2 flux. Whiskers extend from the box to the smallest and largest values within 1.5 310 

times the interquartile range, and points outside the whiskers are considered extreme values. The ANOVA and HSD 311 

post-hoc tests were performed within slope positions and vegetation types, with boxes sharing the same letters 312 

indicating no significant difference.  313 

3.2 Factors contributing to spatial-temporal variability 314 

Three types of environmental factors explain 64 % of the observed seasonal variance in CO₂ emissions, 315 

with contributions of 33 % from soil temperature, 10 % from VWC, 19 % from vegetation (i.e., NDVI, 316 
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root biomass), 2 % from relatively static factors (i.e., SOC stock, C/N ratio), and 6 % from random effects 317 

(i.e., 33 sampling sites) (Table 1). This suggests that long-term stable environmental factors have minimal 318 

direct influence on seasonal CO₂ flux patterns. Interestingly, the contribution of these relatively stable 319 

factors is nearly 11 times higher in explaining overall spatial variations, although soil temperature is still 320 

the dominant factor (Table 1). The low ICC values in both spatial and seasonal models highlight 321 

significant small-scale heterogeneity in soil respiration.  322 

Table 1. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic) of 323 

mixed linear regression models for modelling CO2 flux. Random effects were evaluated by ICC and model 324 

performance was evaluated by Marginal R2, Conditional R2, and RMSE. 325 

Note. Significance level: *** p < 0.001, ** p < 0.01, * p < 0.05. All CO2 fluxes (unit: μmol m-2 s-1), soil temperature, 326 

and VWC data for spatial and seasonal patterns was from the LI8100 A system. To investigate the factors controlling 327 

spatial variations of CO2 flux, we calculated the mean values of CO2 flux, NDVI, soil temperature, and VWC of 328 

each site during the monitoring time. 329 

 
Input variables Seasonal patterns Spatial patterns 

Fixed effects: 

coefficient 

(contribution) 

Static 

 

SOC stock 

(t ha-1) 

0.003 

(1 %) 

-0.003 

(0.06 %) 

 C/N ratio 0.05 

(1 %) 

0.07* 

(10 %) 

Semi 

dynamic 

root biomass 

(g 100g-1) 

0.06 

(0.36 %) 

0.09* 

(12 %) 

NDVI 0.90*** 

(18 %) 

-3.35** 

(12 %) 

Dynamic Soil temp. 

(°C) 

0.12*** 

(33 %) 

0.39*** 

(18 %) 

VWC 

(cm3 cm-3) 

-0.77*** 

(10 %) 

-1.37** 

(11 %) 

Random effects ICC 

(contribution) 

0.18 

(6 %) 

0.06 

(3 %) 

Model 

performance 

Marginal R2 0.64 0.63 

Conditional R2 0.70 0.66 

AIC 1386.00 50.10 

RMSE 0.64 0.25 
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3.3 Continuous hourly time series of CO2 flux and hot moments 330 

Three dynamic variables (i.e., soil temp., VWC, air temp.) were taken into account to predict the time 331 

series of hourly CO2 flux at different slope positions. These input variables were selected due to their 332 

influential roles in explaining the diurnal (Figure S3) and seasonal fluctuations of CO2 emissions. As 333 

shown in Table 2, the temporal model yielded a robust performance in both training and testing dataset, 334 

achieving R² and RMSE values of 0.86 and 0.39 μmol m⁻² s⁻¹ and 0.74 and 0.57 μmol m⁻² s⁻¹, respectively. 335 

Table 2. Model performance for simulating time series of hourly CO₂ flux (unit: μmol m⁻² s⁻¹) and mapping daily 336 

CO₂ flux (unit: μmol m⁻² s⁻¹) across the landscape.  337 

Models 
Training dataset Testing dataset 

RMSE R2 RMSE R2 

Temporal model 0.39 0.86 0.57 0.74 

Spatial model 0.50 0.81 0.54 0.75 

Note. Temporal model used the natural logarithm of CO₂ flux data from LI8100 A and eosFD probes, whereas spatial 338 

model used the natural logarithm of CO₂ flux data only from LI8100 A. 339 

The modelled CO2 emissions at all slope positions display a clear seasonal trend, with higher CO2 fluxes 340 

from June to September and lower estimates in other months, in line with the observed fluxes shown in 341 

brown dots (Figures 3c-3h). The total CO2 fluxes (Table 3) at the summit (19.50 t ha-1) and the shoulder 342 

(dry: 19.47 t ha-1, wet: 16.31 t ha-1) slope positions were higher than that of topslope (14.45 t ha-1), 343 

followed by footslope (13.94 t ha-1) and backslope (11.54 t ha-1) (Table 3), consistent with the spatial 344 

patterns of our observations (Figure 3a). However, the modelled mean ± sd CO2 fluxes at all slope 345 

positions (Table 3) were lower than measured CO2 fluxes by the LI8100 A system. This is because the 346 

measurements were taken during the daytime when fluxes were higher (Figure 2), whereas the modeled 347 

values represent the average of both daytime and nighttime fluxes. Most hot moments occurred from 348 

June to September 2023, whereas few hot moments were observed from late July to the early August 349 

(Figures 3c-3h). Although these hot moments of different slope positions only accounted for 10 % across 350 

the year, they could contribute 28 %-31 % to the annual total CO₂ emissions (Table 3). 351 
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 352 

Figure 3. Time series of hourly rainfall (blue bar), hourly mean VWC (blue line) (a), hourly mean air temperature 353 

(orange line) and soil temperature (black line) (b), modelled hourly CO2 flux (purple lines) and in-situ measurements 354 

(brown dots) at different slope positions (c-h).  Rainfall (unit: mm) data was from the nearby meteorological 355 

observation station. The VWC (unit: cm3 cm-3) and soil temperature (unit: °C) were mean values from five slope 356 

positions monitored by Teros12 sensors at a depth of 10 cm. Air temperatures (unit: °C) were mean values from 5 357 

stations at 1.4 m height above ground. Measured CO2 fluxes (unit: μmol m⁻² s⁻¹) were from the LI8100A system. 358 

 359 

 360 
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Table 3. Summary of modelled mean ± sd CO2 fluxes, thresholds for identifying hot moments, total CO2 flux, and 361 

the contribution of hot moments to total flux at different slope positions. 362 

Slope position Footslope Backslope Shoulder 

wet 

Shoulder 

dry 

Topslope Summit 

Mean ± sd CO2 flux 

(μmol m-2 s-1) 

1.00 ± 0.91 0.83 ± 0.73 1.21 ± 0.99 1.44 ± 1.22 1.04 ± 0.86 1.41 ± 1.22 

Total CO2 flux 

(t ha-1) 

13.94 11.54 16.31 19.47 14.45 19.50 

Threshold 

(μmol m-2 s-1) 

2.22 1.80 2.55 3.07 2.19 3.04 

Contribution 

of hot moments  

30.74 % 30.31 % 28.99 % 28.41 % 28.91 % 29.93 % 

3.4 Daily CO2 flux maps and hot spots 363 

A linear mixed-effects model was utilized to map daily CO₂ flux from 1 May 2023 to 30 April 2024, 364 

incorporating soil temperature, corrected TWI, and SOC stock as predictors due to their significant role 365 

in explaining the spatial-seasonal variability of CO₂ flux and their availability as spatial data. The 366 

mapping model yielded robust performance metrics (Table 2), with R² and RMSE values of 0.81 and 0.50 367 

μmol m⁻² s⁻¹ in the training dataset, and 0.75 and 0.54 μmol m⁻² s⁻¹ in the test dataset, respectively.  368 

Consistent with our observations, the modelled soil respiration also displayed substantial spatial-369 

temporal heterogeneity (Figures 4a-4d). More specifically, the mean CO2 fluxes ranged from 0.17 μmol 370 

m-2 s-1  to 10.80 μmol m-2 s-1  in spring (Figure 4a), 0.36 μmol m-2 s-1  to 30.60 μmol m-2 s-1  in summer 371 

(Figure 4b), 0.18 μmol m-2 s-1  to 14.87 μmol m-2 s-1  in autumn (Figure 4c), and 0.04 μmol m-2 s-1  to 372 

2.24 μmol m-2 s-1  in winter (Figure 4d). Many modelled mean CO2 fluxes at the footslope and backslope 373 

(elevation < 660 m) remained below 2 μmol m-2 s-1 (Figure 4e). In contrast, the modelled CO2 emissions 374 

remained higher throughout the year at the shoulder (660 m ≤ elevation ≤ 670 m) and east of summit 375 

(elevation > 675 m) with high vegetation cover. About 10 % of the area were identified as hot spots, with 376 

a high frequency of hot spots occurring in these regions, while the locations of sporadic hot spots varied 377 

over time (Figure 4f). Overall, the landscape emitted approximately 24.34 t ha-1 CO2 to the atmosphere 378 

during the simulation period, with 19.63 % ± 0.57 % of the CO2 fluxes coming from the hot spots. 379 
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 380 

Figure 4. Maps of modelled mean daily CO2 flux (μmol m-2 s-1) in four seasons (a, b, c, d), throughout the year (e), 381 

and hot spot frequency (f). The histograms of pixel values are presented on the top-right corner of each map. The 382 
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hot spots area proportion and CO2 flux contribution from the hot spots of each season and across the year are 383 

summarized in the corresponding maps.   384 
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4 Discussion 385 

4.1 Drivers of spatiotemporal heterogeneity in CO2 emission 386 

Consistent with prior temperate peatland studies (Juszczak et al., 2013; Wilson et al., 2015; Danevčič et 387 

al., 2010; Swails et al., 2022), our results indicate that seasonal variations in soil CO₂ flux across the 388 

landscape are highly related to soil temperature, which could account for 33 % of the seasonal variability 389 

(Table 1). In contrast to tropical peatlands, where precipitation or water table fluctuations often dominate 390 

CO₂ flux dynamics (Hoyt et al., 2019; Cobb et al., 2017), our observations reveal that temperature 391 

exhibits distinct seasonal patterns (Figure 3b), which in turn drive fluctuations in soil respiration 392 

throughout the year (Figure 2c). Moreover, spatial heterogeneity in soil temperature further shaped 393 

landscape-scale CO₂ emission patterns (Table 1). For instance, the south-facing summit slopes, which 394 

receive more solar radiation in the daytime, consistently show higher CO₂ fluxes (Figure 2a). Conversely, 395 

the north-facing footslope and backslope, situated on the windward side, experience lower temperatures, 396 

resulting in generally lower soil respiration rates throughout the observation period (Figure 2a). While 397 

temperature is the dominant driver, soil water content influences oxygen availability within the peat 398 

profile, thereby regulating microbial decomposition and CO₂ production (Hatala et al., 2012; Knox et al., 399 

2015; Zou et al., 2022; Huang et al., 2021; Deshmukh et al., 2021). For example, Knox et al. (2015) 400 

demonstrated that a declining water table caused by drainage increases oxygen penetration into the peat, 401 

resulting in higher CO₂ flux compared to restored peatlands. In our study case, the CO2 fluxes were 402 

slightly higher in drier shoulder positions compared to wetter areas (Figure 2a), and VWC accounted for 403 

approximately 10 % of the spatial-seasonal variance in CO₂ fluxes (Table 1).  404 

The monthly/biweekly NDVI is the second-most influential predictor for CO2 seasonal fluctuations 405 

(Table 1), as NDVI reveals vegetation phenology during the monitoring period. In the spatial-pattern 406 

model, the contribution from root biomass becomes more substantial, together with mean NDVI 407 

explaining 24 % of spatial variance. These findings align with previous studies that vegetation mediates 408 

soil respiration through root respiration, exudates, litter inputs, and rhizosphere priming effects (Acosta 409 

et al., 2017; Wang et al., 2015a; Walker et al., 2016; Jovani-Sancho et al., 2021; Bragazza et al., 2013). 410 

In our study, the CO2 fluxes of dwarf shrubs (i.e., Vaccinium myrtillus) were significantly lower than 411 

those in Juncus acutus-dominated areas (Figure 2b), likely due to the lower root biomass of dwarf shrubs 412 
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(Table S3). Furthermore, it has been shown that dwarf shrubs in northern peatlands produce high-413 

phenolic litter with higher resistance to breakdown and introduce more water-soluble phenolics into the 414 

soil compared to Sphagnum/herbs (Bragazza et al., 2013; Wang et al., 2015a), which further constrains 415 

microbial activity and CO₂ production. In addition, vegetation cover may indirectly influence soil 416 

respiration by regulating surface microclimate conditions such as humidity and temperature (Nichols, 417 

1998; Stoy et al., 2012).  418 

As shown in Table 1, the SOC stock and C/N ratio have limited explanatory power for the seasonal 419 

variability of CO2 flux, in line with findings of Danevčič et al. (2010). However, when analyzing drivers 420 

of average soil CO2 flux rate across the entire monitoring period, the importance of C/N ratio increased 421 

nearly 11 times (Table 1). This likely reflects how long-term averaging integrates short-term dynamic 422 

variability, thereby amplifying the role of spatial heterogeneity mediated by the C/N ratio. Prior studies 423 

suggesting that the quality of organic material, rather than its quantity, primarily regulates CO2 fluxes in 424 

peatlands (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). Specifically, the soil C/N ratio is known to 425 

regulate microbial community functionality and respiration intensity  (Leifeld et al., 2020; Briones et al., 426 

2014; Ishikura et al., 2018; Wang et al., 2015b).  427 

4.2 CO2 emission hot moments and hot spots: identification, implications, and importance 428 

4.2.1 Temporal analysis and hot moments 429 

During past decades, efforts have been made to model CO2 flux over time based on its relationship with 430 

environmental factors such as hydrology, temperature, substrate quality, microbial community, and 431 

vegetation (Hoyt et al., 2019; Junttila et al., 2021; Schubert et al., 2010; Rowson et al., 2012; Abdalla et 432 

al., 2014; Farmer et al., 2011; Anthony and Silver, 2021).  In our study, diurnal cycles of CO2 fluxes are 433 

closely related to air temperature (Figure S3), while soil temperature and moisture are important factors 434 

in explaining the seasonal patterns of CO2 flux (Table 1). Hence, the three dynamic environment variables 435 

were incorporated into the model to simulate the hourly CO2 flux across the entire monitoring period. 436 

Overall, the temporal model demonstrated robust performance in both the training and testing datasets 437 

(Table 2) and effectively captured seasonal and diurnal trends at most sites (Figures 3c-3h). However, 438 

the modelled peak values are lower than the observations at shoulder and summit slope positions (Figures 439 
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3f, 3e, 3h), which may be partially due to the limited number of high-value observations in these areas. 440 

Consequently, the model is more influenced by the more frequent lower CO2 fluxes, leading to an overall 441 

underestimation of the peak.  In addition, two types of gas analyzers were employed to monitor CO2 flux 442 

with different sampling frequency and time: the LI-8100A sensor was used biweekly or monthly to 443 

capture seasonal trends, while eosFD probes collected data every five minutes to track diurnal 444 

fluctuations. The integration of these datasets for modelling temporal dynamics improved estimation 445 

accuracy but might also introduce uncertainties into the model. 446 

Anthony and Silver (2023) demonstrated that identifying hot moments of CO2 flux in peatland requires 447 

intensive continuous measurements, while as an alternative, our robust simulation of hourly CO2 flux 448 

enabled the identification of hot moments in a complex landscape. We found that most of these hot 449 

moments occurred during the summer and early autumn seasons (Figure 3c-3h), in agreement with our 450 

in-situ observations (Figure 2c). The frequent high CO2 emissions in June and July can be attributed to 451 

the low precipitation, decreased soil moisture, and high temperatures (Figure 3a-3b). However, few hot 452 

moments were captured during late July and early August due to the heavy rainfall events (Figure 3a). 453 

This absence may be attributed to the fact that intense rainfall led to lower temperatures and increased 454 

soil moisture (Figures 3a, 3b), thereby suppressing microbial and root respiration (Hoyt et al., 2019). 455 

Following this period, CO2 emissions reached values that exceeded the 'hot moments' threshold in mid-456 

August, aligning with declining rainfall and rising temperatures (Figures 3c-3h). The hot moments 457 

observed in September are linked to seasonal fluctuations in precipitation and temperature (Figures 458 

3a,3b). 459 

Similar to the findings of Anthony and Silver (2021) and Kannenberg et al. (2020), these hot moments 460 

accounted for approximately 10 % throughout the year, while they contributed significantly to the annual 461 

total CO2 emissions (28 %-31 %; Table 3), highlighting the important role of short-term high-emission 462 

events in the overall carbon emission. Therefore, missing hot moments may lead to significant 463 

underestimates of total peat soil respiration budgets. Despite continuous automated chamber or eddy 464 

covariance measurements that are ideal for capturing hot moments of CO2 emissions (Anthony and Silver, 465 

2023; Hoyt et al., 2019; Anthony and Silver, 2021), long-term continuous monitoring is still labor-466 

intensive and cost-prohibitive in many locations within the complex peatland ecosystems. Given that we 467 
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observed a concentration of hot moments in the summer and autumn, we recommend increasing 468 

monitoring frequency during these seasons for temperate peatlands. This strategy would help capture 469 

carbon emission dynamics more effectively, reduce uncertainties in annual carbon flux estimates, and 470 

provide more representative peatland CO2 flux data. 471 

4.2.2 Spatial analysis of CO2 fluxes and hot spots 472 

Our mapping of CO2 flux across the landscape yielded a model performance of R² = 0.75 and RMSE = 473 

0.54 μmol m-2 s-1 for the test dataset (Table 2). This can be attributed to the incorporation of key 474 

environmental factors that drive the spatiotemporal heterogeneity of soil respiration into the model inputs. 475 

These factors – including soil temperature, corrected TWI, and SOC stock – can be directly obtained 476 

through multi-sensor UAV remote sensing or estimated using high spatiotemporal resolution data. 477 

Previous studies upscaled spatial carbon fluxes using area-weighted methods, extrapolating point data 478 

from CO2 chamber flux measurements to adjacent or larger areas based on land cover maps (Van 479 

Giersbergen et al., 2024; Webster et al., 2008; Leon et al., 2014). However, this approach can lead to 480 

over- or underestimation (Wangari et al., 2023; Leifeld and Menichetti, 2018), because our findings 481 

reveal that even within the same vegetation cover, such as Molinia caerulea, CO2 emissions exhibit 482 

significant spatial-temporal variability (Figure 2b). In recent years, spatial upscaling of CO2 fluxes has 483 

increasingly relied on satellite-based remote sensing data (e.g., Junttila et al. (2021); Wangari et al. (2023); 484 

Zhang et al. (2020); Azevedo et al. (2021); Huang et al. (2015).  While this method covers larger areas, 485 

it is often constrained by coarse temporal and spatial resolutions. The peatland ecosystem is characterized 486 

by great temporal and spatial heterogeneity at small scales, and ignoring these variations can introduce 487 

significant uncertainties in CO2 emission estimates. Our study demonstrates that high-resolution UAV 488 

remote sensing imagery, with fine temporal and spatial scales, could effectively upscale CO2 fluxes from 489 

point measurements across a heterogeneous landscape, thereby reducing uncertainties in spatial 490 

predictions of CO2 fluxes.  491 

Furthermore, the high-resolution CO2 flux maps allowed for the identification of hot spot areas across 492 

the landscape. We found that most of the hot spots occurred at the shoulder areas where soil moisture 493 

was relatively lower and to the east of the summit which is covered by dense vegetation (Figure 1b, 494 

Figure 4f). Spatial variability in the factors controlling biogeochemical processes, such as soil 495 
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temperature, moisture, water table depth, vegetation type, and substrate quality, is likely driving these 496 

differences (Anthony and Silver, 2023; Kuzyakov and Blagodatskaya, 2015; Mcnamara et al., 2008). For 497 

instance, the tree-covered areas at the summit contribute substantial root respiration, which may, in turn, 498 

trigger the formation of consistent hot pots throughout the year. Besides, litterfall beneath trees insulates 499 

the peat soil and provides an abundant resource for microbial activity. 500 

High-emission events from hot spots play a crucial role in overall CO2 fluxes (Anthony and Silver, 2023), 501 

hence, neglecting these areas could lead to substantial underestimation of peatland carbon emissions. In 502 

our study, although less than 10 % of area was identified as hot spots, their CO2 flux contribution 503 

accounted for nearly 20 % across the year (Figure 4).  However, research specifically focusing on 504 

peatland CO2 emission hot spots remains limited (Anthony and Silver, 2023), despite increased 505 

exploration of greenhouse gas emission hot spots in other ecosystems (e.g., agricultural field (Krichels 506 

and Yang, 2019; Rey-Sanchez et al., 2022; Leifeld et al., 2020); wetland (Rey-Sanchez et al., 2022); 507 

water-limited Mediterranean ecosystem (Leon et al., 2014); forest (Wangari et al., 2023)). Hence, to 508 

improve the accuracy of CO₂ spatial budgeting for peatlands, there is a need for enhanced high-resolution 509 

dynamic monitoring of hot spot areas (Becker et al., 2008). Our study demonstrates the great potential 510 

of UAV technology for peatland hot spot identification and quantification, offering new insights into 511 

studying soil respiration within heterogeneous ecosystems as well as optimizing peatland management 512 

and CO2 emission reduction strategies. 513 

  514 
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5 Conclusion 515 

In this study, we monitored the dynamics of peatland surface and subsurface environments using both 516 

field surveys and multi-sensor UAVs at high spatial-temporal resolution. We investigated the influence 517 

of dynamic and static environmental factors on soil respiration rates across different scales, thereby 518 

enhancing our understanding of peatland carbon cycling. Additionally, we simulated CO2 flux with high 519 

spatial-temporal resolution by integrating field measurements and UAV data. These reliable modelling 520 

allow us to identify and quantify CO2 emission hot spots and hot moments across the landscape. To 521 

summarize, the main findings of our study are as follows: 522 

(1) Soil respiration rates vary significantly across space and time, influenced by both dynamic and 523 

relatively static environmental factors at different scales. Temperature is the primary driver of CO2 flux 524 

variations, explaining 33 % CO2 seasonal variability and 18 % spatial variability. Soil moisture 525 

negatively affects both seasonal and spatial variations, accounting for 10 % - 11 % of the variance. Semi-526 

dynamic factors (i.e., NDVI and root biomass) contribute 19 % to seasonal variability and 24 % to spatial 527 

variability. While relative static factors (i.e., the C/N and SOC stock) have little impact on the seasonal 528 

CO2 flux variability, the contribution of the C/N ratio increases nearly 11 times for spatial variability.  529 

(2) Predicting temporal series of hourly CO2 flux can be effectively achieved (test set: R2 = 0.74, RMSE 530 

= 0.57 μmol m⁻² s⁻¹) by considering its relationship with key environmental variables such as air 531 

temperature, soil temperature and soil moisture, all of which are relatively straightforward to monitor. 532 

These reliable time series data provide a foundation for capturing respiration pulses occurring over short 533 

periods, with hot moments primarily occurring in summer and early autumn. 534 

(3) The UAV remote sensing data can yield robust spatial mapping of soil respiration rates across 535 

heterogeneous landscapes, with RMSE and R2 values of 0.54 μmol m⁻² s⁻¹ and 0.75 in the test dataset, 536 

respectively. These high-resolution CO2 flux maps enable us to locate hot spots.  537 

(4) Despite representing 10 % of time within one year, CO2 fluxes from hot moments contribute 28 %-538 

31 % to the overall CO2 flux budgets. Approximately 10 % areas are identified as hot spots, while 539 

contributing 19.63 % ± 0.57 % of total CO₂ fluxes. The locations of high-frequency hot spots remain 540 

consistent, while the locations of sporadic hot spots vary over time. 541 
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