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11 Abstract

12 CO; emissions from peatlands exhibit substantial spatial and temporal variability due to their
13 heterogeneous nature, presenting challenges to identify their underlying drivers and to accurately
14 quantify and model CO; fluxes. Here, we integrated field measurements with Unmanned Aerial Vehicle
15 (UAV)-based multi-sensor remote sensing to investigate soil respiration across a temperate peatland
16 landscape. Our research addressed two key questions: (1) How do environmental factors control the
17 spatial-temporal distribution of soil respiration across complex landscapes? (2) How do hot spots and hot
18 moments of biogeochemical processes influence landscape-level CO, fluxes? We find that dynamic
19 variables (i.e., soil temperature and moisture) play significant roles in shaping CO, flux variations,
20 contributing 43 % to seasonal variability and 29 % to spatial variance, followed by semi-dynamic
21 variables (i.e., NDVI and root biomass) (19 % and 24 %). Relatively static variables (i.e., soil organic
22 carbon (SOC) stock and C/N ratio) have a minimal influence on seasonal variation (2 %) but contribute
23 more to spatial variance (10 %). Additionally, predicting time series of CO, fluxes is feasible by using
24 key environmental variables (test set: R = 0.74, RMSE = 0.57 pmol m s™!), while UAV remote sensing
25 is an effective tool for mapping daily soil respiration (test set: R? = 0.75, RMSE = 0.54 pmol m™s™!). By
26 the integration of in-situ high-resolution time-lapse monitoring and spatial mapping, we find that despite
27 occurring in 10 % of the year, hot moments contribute 28 %-31 % of the annual CO: fluxes. Meanwhile,
28 hot spots—representing 10 % of the area—account for 20 % of CO: fluxes across the landscape. Our
29 study demonstrates that integrating UAV-based remote sensing with field surveys improves the
30 understanding of soil respiration mechanisms across timescales in complex landscapes, providing
31 insights into carbon dynamics and supporting peatland conservation and climate change mitigation
32 efforts.

33 Keywords: Peatlands, Soil respiration, Greenhouse gas (CO,) emission, CO, hot spots, CO, hot

34 moments, Multi-sensor UAV remote sensing, Global warming
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35 1 Introduction

36 Peatlands are globally distributed ecosystems that store approximately 600 Gt of carbon (Yu et al., 2010),
37 despite covering less than 4 % of the Earth’s land surface (Xu et al., 2018). However, rising concerns
38 exist over peatlands shifting from carbon sinks to carbon sources due to the impact of climate change
39 (Dorrepaal et al., 2009; Huang et al., 2021; Hopple et al., 2020), land use/cover conversion (Leifeld et
40 al., 2019; Deshmukh et al., 2021; Prananto et al., 2020), and other disturbances (Wilkinson et al., 2023;
41 Turetsky et al., 2015). In Europe, it has been reported that nearly half of the peatlands are suffering
42 degradation, primarily due to drainage for agricultural or forestry activities (Leifeld et al., 2019; Unep,
43 2022). As a consequence, European peatlands currently emit up to 580 Mt COs-eq per year across the
44 continent (Unep, 2022). Given the critical role of the peatland ecosystem in the terrestrial carbon cycle,
45 it is therefore important to understand the mechanisms driving carbon fluxes and their responses to

46  climate change and human disturbances.

47 Soil respiration in peatlands is influenced by a combination of biotic and abiotic factors, such as soil
48 temperature and moisture (Treat et al., 2014; Fang and Moncrieff, 2001; Juszczak et al., 2013; Swails et
49 al., 2022; Hoyt et al., 2019; Evans et al., 2021), vegetation and root biomass (Acosta et al., 2017; Wang
50 et al., 2021), and soil organic matter quality (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). CO,
51 emissions from peatlands are highly variable over space and time, presenting challenges to accurately
52 quantify and model carbon fluxes. This may partial because peatlands are characterized by a unique
53 microtopography, including features such as soil benches and depressions (Moore et al., 2019). These
54 small-scale variations create differences in hydrology, temperature, biogeochemistry, and vegetation
55 (Harris and Baird, 2019), leading to substantial spatial differences in the factors that control CO: fluxes
56 and the formation of hot spots with elevated CO, emissions (Kelly et al., 2021; Becker et al., 2008;
57 Mcclain et al., 2003; Frei et al., 2012; Kim and Verma, 1992). For instance, the peat surface temperature
58 differences within a 10 m x 10 m plot characterized by hummock and hollow features can be 20°C
59 (Rhoswen et al., 2018). In addition, peatlands experience highly variable weather conditions, which can
60 trigger periods of disproportionately high CO; fluxes—often referred to as 'hot moments'—in response
61 to transient environmental changes, such as sudden shifts in temperature, rainfall events, or fluctuations
62 in the water table (Anthony and Silver, 2023). High CO, emissions occur from discrete areas in space

63 (hot spots) and over short periods (hot moments), and may disproportionately contribute to the overall
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64 fluxes (Anthony and Silver, 2023; Fernandez-Bou et al., 2020). Most studies have examined the
65 mechanisms and contributions of hot spots and hot moments of other greenhouse gases (N>O, CHy) in
66 agricultural and forestry ecosystems (Krichels and Yang, 2019; Anthony and Silver, 2021; Kannenberg
67 et al., 2020; Leon et al., 2014; Fernandez-Bou et al., 2020), while research on CO, emission hot spots

68 and hot moments in peatlands remains limited (Anthony and Silver, 2021, 2023).

69 Identifying and quantifying hot spots and hot moments in peatlands is challenging, requiring large-scale,
70 continuous, long-term observations. Currently, most studies on peatland soil respiration rely on point
71 measurements taken at intervals of half a month to one month, primarily during daytime (e.g., Wright et
72 al. (2013); Bubier et al. (2003); Kim and Verma (1992); Danev¢i¢ et al. (2010)). This spatial-temporal
73 limitation hinders the effective detection of hot spots and hot moments. Some studies attempted to
74 extrapolate point data using land-use maps (Van Giersbergen et al., 2024; Webster et al., 2008; Mcnamara
75 et al., 2008), but uncertainties in landscape-scale fluxes increase as the number of measurement locations
76 decreases (Arias-Navarro et al., 2017; Wangari et al., 2022; Wangari et al., 2023). While automated
77 chamber systems improve temporal resolution and help capture hot moments (Hoyt et al., 2019; Anthony
78 and Silver, 2023), they are typically limited to a few sampling points, and scaling up is constrained by
79 significant resource demands. Eddy covariance towers measure net ecosystem exchange over large areas
80 by recording high-frequency CO; concentrations and air turbulence, providing insights into temporal
81 variations at the ecosystem level (Rey-Sanchez et al., 2022; Abdalla et al., 2014). However, the
82  underlying controlling factors and mechanisms at the process level are difficult to infer due to the large
83 spatial footprint. In addition, they may not accurately represent the spatial heterogeneity of peatlands
84 (Lees et al., 2018). These limitations highlight the need for complementary approaches to estimate CO>

85 fluxes at the landscape scale with methods adapted for heterogeneous peatland ecosystems.

86 Several studies have integrated satellite-based remote sensing datasets with on-site chamber
87 measurements to model landscape-scale CO; fluxes (e.g., Junttila et al. (2021); Wangari et al. (2023);
88 Lees et al. (2018); Azevedo et al. (2021)). Remote sensing datasets on topography and vegetation
89  parameters serve as proxies for soil moisture, vegetation cover, and nutrient availability, enabling large-
90  scale CO; emission estimates within peatlands (Lees et al., 2018). However, this approach is somewhat

91 limited by coarse spatial (10 m to 1 km) and temporal (1 to 16 days) resolutions, which may overlook
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92 hot spots and hot moments, leading to potential over- or underestimations of CO> fluxes in heterogeneous
93  peatlands (Kelly et al., 2021; Simpson, 2023). This shortcoming might be overcome by using unmanned
94 aerial vehicles (UAVs) equipped with different kinds of sensors such as Red-Green-Blue (RGB),
95 multispectral, thermal infrared, and Light Detection and Ranging (LiDAR). UAVs offer flexible
96 deployment and capture high-resolution spatiotemporal data (1 cm to 1 m, minutes to months) (Minasny
97 et al., 2019) which makes them particularly suitable for monitoring complex peatland dynamics and
98 detecting hot spots and hot moments. Thus far, UAVs have proven to be reliable tools for peatland
99 applications, including vegetation mapping (Steenvoorden et al., 2023), topographic reconstruction
100 (Harris and Baird, 2019), peat depth and carbon storage estimation (Li et al., 2024), and moisture
101 monitoring (Henrion et al., 2025). In a recent study, Kelly et al. (2021) utilized UAV-derived land surface
102 temperature to estimate ecosystem respiration of a hemi-boreal fen in southern Sweden, and Pajula and
103 Purre (2021) and Walcker et al. (2025) employed UAV-based multispectral vegetation indices to map
104 ecosystem CO; flux at high resolution. These recent studies demonstrated the great potential of UAVs
105 for linking CO; fluxes with environmental factors at a very high resolution, although they mainly focused
106 on data from a single sensor. Few studies have explored the fusion of UAV-derived data from multiple

107 sensors for mapping soil respiration across peatland landscapes.

108 In this study, we integrate multi-sensor UAV-based remote sensing with traditional field surveys to
109 investigate soil respiration across a temperate peatland landscape, located in the Belgian Hautes Fagnes.
110 As one of the largest and most ancient peatlands in Western Europe, the Belgian Hautes Fagnes represents
111 an important ecosystem for studying peatland carbon fluxes due to its sensitivity to climate change and
112 hydrological dynamics. Our research addresses two key questions: (1) What controls the nature and
113 strength of the relationship between soil respiration and environmental factors across complex peatland
114 landscapes and across spatial-temporal scales? (2) How do hot spots or hot moments of biogeochemical
115  processes influence landscape-level carbon fluxes? More specifically, our study has three main objectives.
116 First, we aim to identify the factors driving seasonal and spatial variations in soil respiration. Second, we
117 assess the potential for linking environmental factors to CO; flux at high spatial and temporal resolutions.
118 Third, we discuss the timing and location of hotspots and hot moments, assessing their contributions to

119  overall CO; flux budgets.
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120 2 Materials and methods
121 2.1 Study site

122 The Belgian Hautes Fagnes plateau, part of the Stavelot-Venn Massif, is located in eastern Belgium
123 (Figure 1a). This elevated landscape experiences a humid climate, with mean annual air temperature and
124 precipitation being approximately 6.7 °C and 1439.4 mm (period: 1971-2000), respectively (Mormal and
125 Tricot, 2004). The peatlands in this region cover an area of 37.50 km?, which primarily consist of raised
126  bogs formed since the Late Pleistocene (Frankard et al., 1998). Our study site (50.49 N, 6.05 E; ~0.30
127 km?) is located in the upper valley of the Hoégne River peatland region (Figure la). The site is
128 characterized by a distinct SE-NW oriented topographic gradient, with a clear transition from a low-relief
129  plateau to steep hillslopes and then to the floodplain of a broad river valley (Sougnez and Vanacker,
130 2011). The area was drained and planted with spruces in 1914 and 1918. The plantations were
131 progressively cleared between 2000 and 2016; since 2017, the site has been restored through reforestation
132 with native hardwood species such as Betula pubescens and Quercus robur. Figure 1b shows main
133 vegetation types across this landscape. An observation station of the Royal Meteorological Institute of
134 Belgium (Mont Rigi, 50.51 N, 6.07 E) situated 3.07 km from the study site, records rainfall data every

135 10 minutes.
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137 Figure 1. Maps showing the field-sampling locations (a) and land cover types (b) in the study area. Details on the

138 land cover map are provided in our previous work (Li et al., 2024).
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139 2.2 CO2 flux measurement campaigns

140 Soil surface CO; flux measurements were conducted at five slope positions along the middle part of the
141 site (Figure 1a). A portable infrared gas analyzer with an automated closed dynamic chamber (LI-8100A
142 system, LI-COR, United States) was used to monitor CO; fluxes at 33 sites biweekly from December
143 2022 to March 2024 (Figure S1). At each slope position, six collars (20 cm diameter) were installed
144 randomly, spaced 1-5 meters apart, to capture small-scale spatial variability. While at the shoulder,
145 considering the heterogeneous soil water conditions, six collars were installed in drier areas and another
146  three in wetter areas. All vegetation within the collars was removed. During each campaign, monitoring
147 was conducted between 9:00 and 16:00. At each site, the CO, flux (umol m? s!) in the chamber was
148 measured for 2.5 minutes per observation. Simultaneously, soil surface temperature (0—10 cm) and
149 volumetric water content (VWC) during each CO, measurement were recorded using a T-handled type-
150 E thermocouple sensor (8100-201, LI-COR, United States) and a portable five-rod, 0.06 m long
151 frequency domain reflectometry (FDR) probe system (ML2x, Delta-T, United Kingdom), respectively.
152 However, CO, measurements were not always possible due to technical issues and bad weather
153 conditions, resulting in a total of 666 valid measurements. In addition, a pair of soil CO; forced diffusion
154  probes (eosFD, EOSense, United States) were installed near LI-8100A collars from 24 April 2024 to 8
155  November 2024 (Figure S1). These probes, consisting of a soil node and a reference node, are based on
156 a membrane-based steady-state approach and can measure CO; flux every 5 minutes (Risk et al., 2011).
157 During this period, the probes continuously monitored CO- flux at different slope positions (Figure S1),

158 resulting in a total of 39476 valid flux measurements.

159 2.3 Temperature and soil moisture monitoring

160 The temporal evolution of soil temperature and moisture along the middle part was monitored using
161 Teros12 sensors (Meter Group, Miinchen, Germany), with two replicates per slope position, spaced 5
162 meters apart (Figure 1a) (Henrion et al., 2025). These sensors recorded data at a depth of 10 cm from 14
163 October 2022 to 28 October 2024, every 10 minutes. Between the two replicates of each slope position,
164 a station positioned ~1.4 m above the ground recorded air temperature every ten minutes. Additionally,
165 ten soil temperature data loggers (EL-USB-1-PRO, Lascar, United Kingdom) were installed primarily

166 along two evenly spaced transects parallel to the main slope, at a depth of 10 cm (Figure la). These
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167 loggers recorded soil temperatures at the same frequency as Teros12 sensors from 21 March 2023 to 8

168 November 2024.

169 2.4 Soil sampling and laboratory analysis

170 After completing all gas sampling campaigns, 33 disturbed soil samples (0-10 cm depth) were collected
171 within LI8100A collars at the five slope positions between 30 July and 15 October 2024. An Emlid Reach
172 RS 2 GPS device with centimeter-level precision was used to record the sampling site locations, using a
173 PPK solution with the Belgian WALCORS network. The samples were stored in a refrigerator until
174 laboratory analysis. A subset of the samples was oven-dried at 80 °C for 24 hours (Dettmann et al., 2021),
175  then crushed and ground into a fine powder for soil organic carbon (SOC) and total nitrogen content (TN)
176 analysis (928 Series, LEGO, United States). Roots and litter were removed using tweezers during the
177  pre-processing procedure. We tested the presence of inorganic carbon of each sample by adding one drop
178 of 10 % HCI but found that no inorganic carbon was present in the samples. A subset of fresh samples
179 was used for root biomass analysis. The fresh soil samples were weighed and placed in a 1 mm sieve,
180 then rinsed with water to collect the roots. The washed roots were dried in an oven at 80 °C for 48 hours

181 and then weighed to calculate their dry biomass.

182 2.5 UAV data acquisition and imagery processing

183 During the CO; flux monitoring period, we conducted regular UAV flights across the study area to collect
184 high-resolution spatial data (Figure S1). A DJI Matrice 300 RTK was equipped with four different sensors:
185 (i) a Red-Green-Blue (RGB) camera (DJI Zenmuse P1 camera, 35 mm and 45 MP), (ii) a multispectral
186 camera (MicaSense RedEdge-M camera with five discrete spectral bands: blue (475 nm), green (560 nm),
187 red (668 nm), rededge (717 nm), and near-infrared (842 nm), along with a downwelling light sensor),
188 (ii1) a LIDAR scanner (DJI Zenmuse L1, integrated with a 20-MP camera with a 1-inch CMOS sensor)
189 and (iv) a thermal infrared camera (TeAX, featuring FLIR Tau2 cores and ThermalCapture hardware).
190 Similar flight patterns and altitudes were used for the UAV missions as in our previous work (Li et al.,
191 2024). In total, one RGB and one LiDAR dataset collected on 7 June 2023, were used in this study and

192 ten multispectral and ten thermal datasets collected between 13 April 2023 and 13 May 2024.

193 The raw multispectral images were processed in the Pix4D mapper software (Pix4D S.A., Lausanne,

8
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194 Switzerland) to generate reflectance maps (resolution: 6 cm) of the five spectral bands of the study area.
195 We calculated the Normalized Difference Vegetation Index (NDVI) across the 10 maps from the
196 monitoring period (Table S1). The raw thermal infrared video streams were converted into RJPG images
197 using ThermoViewer version 3.0.26 (TeAX, 2022). Subsequently, the thermal images were processed
198 with the Pix4D mapper to generate land surface temperature (LST) maps (resolution: 12 cm), which were
199  used for soil temperature mapping (Text S1, Figure S2, Table S2). The RGB photos were processed in
200 DJI Terra V4.0.10 (DJI, 2023) to generate an orthomosaic image with a resolution of 1.26 cm. The raw
201 LiDAR data was processed in DJI Terra to provide a Digital Terrain Model (DTM; .tif file) with a
202 resolution of 15 cm, which was used for generating daily air temperature maps (Text S1) and terrain
203 wetness index (TWI) (Text S2). The variables derived from the four types of images were summarized

204 in Table S1.

205 2.6 Statistical analysis

206 All data analyses were conducted in RStudio (v4.1.2). All timestamps in this study were converted to
207 Coordinated Universal Time (UTC) to ensure consistency across datasets. Group differences were
208 assessed by the one-way analysis of variance (ANOVA) using the stats package. When ANOVA detected
209 a significant effect (p < 0.05), Tukey's Honestly Significant Difference (HSD) post-hoc test was
210 performed to determine which groups differed significantly from each other. Pearson correlation analysis
211 was performed using the corrplot package (Murdoch and Chow, 1996). The linear mixed-effects models
212 used to identify factors controlling spatial- temporal variations of CO; flux, as well as time series

213  simulation and mapping are introduced below.

214 2.6.1 Models to explain spatial-temporal variations in CO2 flux

215 We utilized linear mixed-effects models to assess the impacts of both static and dynamic environmental
216 factors on the spatial and seasonal variability of CO; fluxes. This is because mixed models integrate both
217 fixed and random effects, which provide a robust framework for analyzing data with non-independent
218 structures (Pinheiro and Bates, 2000). The model was performed using the /me4 package (Bates et al.,
219 2015), with the natural logarithm of CO, flux observations as a response. The CO, fluxes data are often

220 characterized by extreme values and right-skewed distribution, and a lognormal assumption for CO,
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221 fluxes could better account for the influences of extreme values on the overall distribution (Wutzler et

222 al., 2020). The mixed-effects models were defined as:

223 Yij = Bo+ Bixij + o+ Bpxij + boj + byjzij + -+ € (€))]

224 Where:

225 * y;; is the dependent variable (i.e., In (CO flux), unit: pmol m s") for observations i in group
226 j.

227 ® B0, B1s---, By are fixed-effect coefficients.

228 e x;; is the fixed-effect variable (independent variable).

229 ®byj, byj,... are random-effect coefficients associated with group j, which account for
230 variability across groups.

231 e z;; is the random-effect variable.

232 e ¢;; is the residual error term.

233 The fixed-effect predictors were categorized into three groups:

234 o Static variables: SOC stock, and the ratio of SOC content to nitrogen content (C/N ratio).
235 o Semi-dynamic variables: root biomass and NDVI.
236 e Dynamic variables: soil temperature and soil moisture at 0—-10 cm depth.

237 Estimates for NDVI were extracted from the maps by retrieving the value of the 33 CO, flux observation
238 sites and the SOC stock values were extracted from the a local high resolution (0.15 m) SOC stock map
239 (Li et al., 2024). The sites were included as random effects in the seasonal pattern model to account for
240 repeated measurements at the same locations during the monitoring period, whereas slope positions were
241 treated as random effects in the spatial pattern model. Independent variable coefficients, Intraclass
242 Correlation Coefficient (/CC), coefficients of determination (marginal R? and conditional R?), Root Mean
243 Square Error (RMSE), and Akaike Information Criterion (4/C) were extracted using the modelsummary
244 package after running each model. The /CC quantifies the proportion of variance explained by a grouping
245 (random) factor in multilevel data; values close to 1 indicate high similarity within groups, while values
246 near 0 suggest that grouping conveys little to no information (Nakagawa et al., 2017; Shrout and Fleiss,
247 1979). The marginal R? represents the variance explained by fixed effects alone, and conditional R?

248 represents the variance explained by both fixed and random effects (Pinheiro and Bates, 2000). The

10
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249 relative importance of each independent variable was obtained using the glmm.hp package. To assess
250 multicollinearity in regression analysis, the car package was used to calculate the variance inflation

251 factor (VIF) (Fox and Monette, 1992).

252 2.6.2 Modelling hourly CO: flux

253 The mixed-effects model was utilized to simulate the time series of CO; fluxes at different slope positions.
254 Here, the slope position was included as random variable, and the natural logarithm of CO flux (hourly)
255 was set as a response. We utilized CO, fluxes data measured by both the LIS100A system and eosFD
256 probes. Specifically, we randomly selected a number of 30 observations from the eosFD probes at each
257 slope position to reduce data redundancy from high-frequency sampling. Afterwards, we applied
258 weighting to adjust the remaining imbalance in data density between the high-frequency eosFD
259 monitoring and low-frequency LI8100A measurements, ensuring both data sources contributed
260  proportionally to the model. The independent variables included hourly soil temperature (10 cm depth),
261 volumetric soil moisture (VWC, 10 cm depth), and air temperature (1.4 m height), considering their

262 importance in explaining the seasonal and diurnal patterns of CO; flux.

263  Asin our previous work (Li et al., 2024), we divided the dataset into a training set (70 %) and a test set
264 (30 %) using K-means clustering to minimize biases that could arise from random sampling (Hair et al.,
265 2010). The models were trained on the training set, and the simulation accuracy was validated using the
266 test dataset. The coefficient of determination (R”) and RMSE were used to assess the quality of the model
267 fit. Finally, we made simulations of the time series of hourly CO, flux for different slope positions from
268 1 May 2023 to 30 April 2024. Furthermore, we identified CO; emission hot moments based on the

269  description in Section 2.6.4.

270  2.6.3 Mapping daily CO: flux

271 The linear mixed-effects model was utilized to map the spatial distribution of daily CO, fluxes across the
272 landscape, with daily soil temperature (10 cm depth), corrected daily TWI, and SOC stock being
273 considered as fixed-effect variables and gas sampling sites being included as random variables. The daily
274 CO; flux model training, testing procedures, and evaluation of model fit followed the same approach

275 detailed in Section 2.6.2. We then applied the trained model to predict the daily CO; flux of the landscape
11
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276 from 1 May 2023 to 30 April 2024. Additionally, we calculated the mean daily soil CO, flux maps for
277  each season and the entire year. Based on these predictions, we identified hot spots for each day by the

278 methods described below.

279  2.6.4 Quantifying hot moments and hot spots of CO2 flux

280 In previous studies, percentiles have been used as thresholds for identifying heat waves (e.g., (Meehl and
281 Tebaldi, 2004): 97.5th percentile), soil heat extremes (e.g., Garcia-Garcia et al. (2023): 90th percentile),
282 hot spots of NoO emissions (e.g., Mason et al. (2017): median plus three times the interquartile range),
283 and hot spots of CO, emissions (e.g., Wangari et al. (2023): median plus the interquartile range). In this
284 study, we tested different methods and selected the 90th percentile as the threshold of both hot moments
285 and hot spots to balance capturing extreme CO: emissions while maintaining a sufficient sample size. To
286 capture the hot moments, we calculated a threshold for each slope position separately using its own

287  dataset. For hot spots, we determined a daily threshold based on each map.

288

12
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289 3 Results
290 3.1 Spatial and temporal patterns of CO2 flux

291 During the monitoring period, the CO, emissions show large spatial and seasonal variations across the
292 landscape. The CO; fluxes at the summit (3.16 = 3.25 pmol m? s™!) and shoulder (dry: 2.81 £ 3.22 umol
293  m? s, wet: 2.33 £ 2.36 umol m™ s!) slope positions were significantly higher than that of footslope
294 (1.25%1.00 umol m™ s™') and backslope (1.11 + 1.03 umol m? s™") (p < 0.05) (Figure 2a). Furthermore,
295 significant differences were observed when grouping the data into three vegetation covers: CO;
296 emissions from Vaccinium myrtillus were lower than those from Juncus acutus, with mean + sd values
297  of 1.59 + 1.43 pmol m™ 57!, and 2.33 + 2.36 pmol m™ s, respectively (Figure 2b) (p < 0.05). However,
298 the CO, fluxes under Molinia caerulea displayed large variations (0.02~20.1 pmol m? s'), and no
299 significant differences were found compared to the other two vegetation types. The CO; flux data
300 indicated large CO, emissions from June to September (3.65 + 2.68 umol m s!), which can be 8.11
301 times higher than that from winter and early spring (0.45 + 0.40 umol m* s™') (Figure 2¢). CO, emissions

302 in May and October were at a moderate level.

13



https://doi.org/10.5194/egusphere-2025-1595
Preprint. Discussion started: 15 May 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere®

20 . 20 .
@ . . (b) .
7: 15 a 15 ab
£ ab : :
g : : H
510 : . 10 : a
8 s 5 !
0 ﬁ 0
Footslope Backslope Shoulder(w) Shoulder(d) Topslope Summit Myrtillus ~ Molinia Juncus
Slope position Vegetation type
20 .
(©) . .
ET
£ * .
°© 3 .
E .
510 . : ]
x . * H .
2 ' .
° B AT
R B :
T A A R G A g
Pl . 3 . P @ @ & © g O © KR Sl SN -8 A
o N W T T T 0 Y o % T & o &
303 Date
304 Figure 2. Boxplot of CO2 flux (umol m s*!) across different slope positions (a), vegetation types (b), and sampling
305 dates (c), using data from the LI8100 A system recorded between 2023-02-13 and 2024-03-13. (a), CO2 flux data of
306 each box were from all dates, and Shoulder (w) and Shoulder (d) indicate shoulder wet and shoulder dry areas,
307 respectively. (b), COz flux data of each box were from all dates, and Myrtillus, Molinia and Juncus indicate
308 Vaccinium myrtillus, Molinia caerulea and Juncus acutus, respectively. (c), CO2 flux data of each box were from all
309 slope positions. The edges of each box represent the first quartile (Q1) and third quartile (Q3), while the line inside
310 the box indicates the median CO2 flux. Whiskers extend from the box to the smallest and largest values within 1.5
311 times the interquartile range, and points outside the whiskers are considered extreme values. The ANOVA and HSD
312 post-hoc tests were performed within slope positions and vegetation types, with boxes sharing the same letters
313 indicating no significant difference.
314 3.2 Factors contributing to spatial-temporal variability
315 Three types of environmental factors explain 64 % of the observed seasonal variance in CO: emissions,
316 with contributions of 33 % from soil temperature, 10 % from VWC, 19 % from vegetation (i.e., NDVI,
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root biomass), 2 % from relatively static factors (i.e., SOC stock, C/N ratio), and 6 % from random effects

(i.e., 33 sampling sites) (Table 1). This suggests that long-term stable environmental factors have minimal

direct influence on seasonal CO: flux patterns. Interestingly, the contribution of these relatively stable

factors is nearly 11 times higher in explaining overall spatial variations, although soil temperature is still

the dominant factor (Table 1). The low /CC values in both spatial and seasonal models highlight

significant small-scale heterogeneity in soil respiration.

Table 1. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic) of

mixed linear regression models for modelling CO: flux. Random effects were evaluated by /CC and model

performance was evaluated by Marginal R?, Conditional R?, and RMSE.

Input variables

Seasonal patterns

Spatial patterns

Fixed effects: Static SOC stock 0.003 -0.003
coefficient (that) (1 %) (0.06 %)
(contribution) CI/N ratio 0.05 0.07*
(1 %) (10 %)
Semi root biomass 0.06 0.09*
dynamic (g 100g) (0.36 %) (12 %)
NDVI 0.90*** -3.35%*
(18 %) (12 %)
Dynamic  Soil temp. 0.12%** 0.39***
(°C) (33 %) (18 %)
vwC -0.77*** -1.37%*
(cm® cm®) (10 %) (11 %)
Random effects ICC 0.18 0.06
(contribution) (6 %) (3%)
Model Marginal R? 0.64 0.63
performance Conditional R? 0.70 0.66
AIC 1386.00 50.10
RMSE 0.64 0.25

Note. Significance level: *** p <0.001, ** p <0.01, * p <0.05. All CO2 fluxes (unit: pmol m s™'), soil temperature,

and VWC data for spatial and seasonal patterns was from the LI8100 A system. To investigate the factors controlling

spatial variations of COz flux, we calculated the mean values of CO2 flux, NDVI, soil temperature, and VWC of

each site during the monitoring time.
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330 3.3 Continuous hourly time series of CO: flux and hot moments

331 Three dynamic variables (i.e., soil temp., VWC, air temp.) were taken into account to predict the time
332 series of hourly CO; flux at different slope positions. These input variables were selected due to their
333 influential roles in explaining the diurnal (Figure S3) and seasonal fluctuations of CO, emissions. As
334 shown in Table 2, the temporal model yielded a robust performance in both training and testing dataset,

335 achieving R?and RMSE values of 0.86 and 0.39 pmol m2s™' and 0.74 and 0.57 pmol m2s™!, respectively.

336 Table 2. Model performance for simulating time series of hourly CO: flux (unit: pmol m2 s™') and mapping daily

337 CO: flux (unit: pmol m2 s7!) across the landscape.

Training dataset Testing dataset
Models

RMSE R? RMSE R?
Temporal model 0.39 0.86 0.57 0.74
Spatial model 0.50 0.81 0.54 0.75

338 Note. Temporal model used the natural logarithm of CO: flux data from LI8100 A and eosFD probes, whereas spatial

339 model used the natural logarithm of CO: flux data only from LIS100 A.

340 The modelled CO; emissions at all slope positions display a clear seasonal trend, with higher CO» fluxes
341 from June to September and lower estimates in other months, in line with the observed fluxes shown in
342 brown dots (Figures 3¢-3h). The total CO, fluxes (Table 3) at the summit (19.50 t ha') and the shoulder
343 (dry: 19.47 t ha'!, wet: 16.31 t ha'!) slope positions were higher than that of topslope (14.45 t ha),
344 followed by footslope (13.94 t ha'!) and backslope (11.54 t ha!) (Table 3), consistent with the spatial
345  patterns of our observations (Figure 3a). However, the modelled mean + sd CO, fluxes at all slope
346 positions (Table 3) were lower than measured CO> fluxes by the LI§100 A system. This is because the
347 measurements were taken during the daytime when fluxes were higher (Figure 2), whereas the modeled
348 values represent the average of both daytime and nighttime fluxes. Most hot moments occurred from
349 June to September 2023, whereas few hot moments were observed from late July to the early August
350 (Figures 3c-3h). Although these hot moments of different slope positions only accounted for 10 % across

351 the year, they could contribute 28 %-31 % to the annual total CO: emissions (Table 3).
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Figure 3. Time series of hourly rainfall (blue bar), hourly mean VWC (blue line) (a), hourly mean air temperature

(orange line) and soil temperature (black line) (b), modelled hourly COz2 flux (purple lines) and in-situ measurements

(brown dots) at different slope positions (c-h). Rainfall (unit: mm) data was from the nearby meteorological

observation station. The VWC (unit: cm® ¢cm™) and soil temperature (unit: °C) were mean values from five slope

positions monitored by Teros12 sensors at a depth of 10 cm. Air temperatures (unit: °C) were mean values from 5

stations at 1.4 m height above ground. Measured COz fluxes (unit: umol m2 s™') were from the LIS100A system.

17



https://doi.org/10.5194/egusphere-2025-1595
Preprint. Discussion started: 15 May 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

361  Table 3. Summary of modelled mean + sd CO fluxes, thresholds for identifying hot moments, total CO2 flux, and

362 the contribution of hot moments to total flux at different slope positions.

Slope position Footslope Backslope Shoulder Shoulder Topslope Summit
wet dry
Mean+sd CO2 flux  1.00£091 0.83+0.73 1.21+099 144+122 1.04+£086 1.41+122

(umol m?2 s

Total CO2 flux 13.94 11.54 16.31 19.47 14.45 19.50
(tha)
Threshold 2.22 1.80 2.55 3.07 2.19 3.04

(umol m2 s
Contribution 30.74 % 30.31 % 28.99 % 28.41 % 2891 % 2993 %

of hot moments

363 3.4 Daily CO: flux maps and hot spots

364 A linear mixed-effects model was utilized to map daily CO: flux from 1 May 2023 to 30 April 2024,
365 incorporating soil temperature, corrected TWI, and SOC stock as predictors due to their significant role
366 in explaining the spatial-seasonal variability of CO. flux and their availability as spatial data. The
367 mapping model yielded robust performance metrics (Table 2), with R? and RMSE values of 0.81 and 0.50

368 umol m2 s in the training dataset, and 0.75 and 0.54 pmol m™ s in the test dataset, respectively.

369 Consistent with our observations, the modelled soil respiration also displayed substantial spatial-
370 temporal heterogeneity (Figures 4a-4d). More specifically, the mean CO; fluxes ranged from 0.17 umol
371  m?s! to 10.80 pmol m? s in spring (Figure 4a), 0.36 pmol m? s to 30.60 pmol m? s™' in summer
372  (Figure 4b), 0.18 pmol m? s to 14.87 umol m? s’ in autumn (Figure 4c), and 0.04 pmol m? s! to
373 2.24 ymol m? 5! in winter (Figure 4d). Many modelled mean CO; fluxes at the footslope and backslope
374 (elevation < 660 m) remained below 2 umol m? s™! (Figure 4e). In contrast, the modelled CO, emissions
375 remained higher throughout the year at the shoulder (660 m < elevation < 670 m) and east of summit
376 (elevation > 675 m) with high vegetation cover. About 10 % of the area were identified as hot spots, with
377 a high frequency of hot spots occurring in these regions, while the locations of sporadic hot spots varied
378 over time (Figure 4f). Overall, the landscape emitted approximately 24.34 t ha™! CO; to the atmosphere

379 during the simulation period, with 19.63 % + 0.57 % of the CO» fluxes coming from the hot spots.
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383 hot spots area proportion and COz flux contribution from the hot spots of each season and across the year are

384  summarized in the corresponding maps.
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385 4 Discussion
386 4.1 Drivers of spatiotemporal heterogeneity in CO: emission

387 Consistent with prior temperate peatland studies (Juszczak et al., 2013; Wilson et al., 2015; Danev¢ic et
388 al., 2010; Swails et al., 2022), our results indicate that seasonal variations in soil CO: flux across the
389 landscape are highly related to soil temperature, which could account for 33 % of the seasonal variability
390 (Table 1). In contrast to tropical peatlands, where precipitation or water table fluctuations often dominate
391 CO: flux dynamics (Hoyt et al., 2019; Cobb et al., 2017), our observations reveal that temperature
392 exhibits distinct seasonal patterns (Figure 3b), which in turn drive fluctuations in soil respiration
393 throughout the year (Figure 2c¢). Moreover, spatial heterogeneity in soil temperature further shaped
394 landscape-scale CO: emission patterns (Table 1). For instance, the south-facing summit slopes, which
395 receive more solar radiation in the daytime, consistently show higher CO: fluxes (Figure 2a). Conversely,
396 the north-facing footslope and backslope, situated on the windward side, experience lower temperatures,
397 resulting in generally lower soil respiration rates throughout the observation period (Figure 2a). While
398 temperature is the dominant driver, soil water content influences oxygen availability within the peat
399 profile, thereby regulating microbial decomposition and CO: production (Hatala et al., 2012; Knox et al.,
400 2015; Zou et al., 2022; Huang et al., 2021; Deshmukh et al., 2021). For example, Knox et al. (2015)
401 demonstrated that a declining water table caused by drainage increases oxygen penetration into the peat,
402 resulting in higher CO: flux compared to restored peatlands. In our study case, the CO; fluxes were
403 slightly higher in drier shoulder positions compared to wetter areas (Figure 2a), and VWC accounted for

404 approximately 10 % of the spatial-seasonal variance in CO: fluxes (Table 1).

405 The monthly/biweekly NDVI is the second-most influential predictor for CO, seasonal fluctuations
406 (Table 1), as NDVI reveals vegetation phenology during the monitoring period. In the spatial-pattern
407 model, the contribution from root biomass becomes more substantial, together with mean NDVI
408 explaining 24 % of spatial variance. These findings align with previous studies that vegetation mediates
409 soil respiration through root respiration, exudates, litter inputs, and rhizosphere priming effects (Acosta
410 et al., 2017; Wang et al., 2015a; Walker et al., 2016; Jovani-Sancho et al., 2021; Bragazza et al., 2013).
411 In our study, the CO; fluxes of dwarf shrubs (i.e., Vaccinium myrtillus) were significantly lower than

412 those in Juncus acutus-dominated areas (Figure 2b), likely due to the lower root biomass of dwarf shrubs
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413 (Table S3). Furthermore, it has been shown that dwarf shrubs in northern peatlands produce high-
414 phenolic litter with higher resistance to breakdown and introduce more water-soluble phenolics into the
415 soil compared to Sphagnum/herbs (Bragazza et al., 2013; Wang et al., 2015a), which further constrains
416 microbial activity and CO: production. In addition, vegetation cover may indirectly influence soil
417 respiration by regulating surface microclimate conditions such as humidity and temperature (Nichols,

418 1998; Stoy et al., 2012).

419  As shown in Table 1, the SOC stock and C/N ratio have limited explanatory power for the seasonal
420 variability of CO; flux, in line with findings of Danev¢ic et al. (2010). However, when analyzing drivers
421 of average soil CO» flux rate across the entire monitoring period, the importance of C/N ratio increased
422  nearly 11 times (Table 1). This likely reflects how long-term averaging integrates short-term dynamic
423 variability, thereby amplifying the role of spatial heterogeneity mediated by the C/N ratio. Prior studies
424 suggesting that the quality of organic material, rather than its quantity, primarily regulates CO> fluxes in
425 peatlands (Hoyos-Santillan et al., 2016; Leifeld et al., 2012). Specifically, the soil C/N ratio is known to
426 regulate microbial community functionality and respiration intensity (Leifeld et al., 2020; Briones et al.,

427 2014; Ishikura et al., 2018; Wang et al., 2015b).

428 4.2 CO2 emission hot moments and hot spots: identification, implications, and importance
429 4.2.1 Temporal analysis and hot moments

430 During past decades, efforts have been made to model CO; flux over time based on its relationship with
431 environmental factors such as hydrology, temperature, substrate quality, microbial community, and
432 vegetation (Hoyt et al., 2019; Junttila et al., 2021; Schubert et al., 2010; Rowson et al., 2012; Abdalla et
433 al., 2014; Farmer et al., 2011; Anthony and Silver, 2021). In our study, diurnal cycles of CO, fluxes are
434 closely related to air temperature (Figure S3), while soil temperature and moisture are important factors
435 in explaining the seasonal patterns of CO; flux (Table 1). Hence, the three dynamic environment variables
436  were incorporated into the model to simulate the hourly CO» flux across the entire monitoring period.
437 Overall, the temporal model demonstrated robust performance in both the training and testing datasets
438 (Table 2) and effectively captured seasonal and diurnal trends at most sites (Figures 3c-3h). However,

439 the modelled peak values are lower than the observations at shoulder and summit slope positions (Figures
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440 3f, 3e, 3h), which may be partially due to the limited number of high-value observations in these areas.
441 Consequently, the model is more influenced by the more frequent lower CO; fluxes, leading to an overall
442  underestimation of the peak. In addition, two types of gas analyzers were employed to monitor CO; flux
443 with different sampling frequency and time: the LI-8100A sensor was used biweekly or monthly to
444 capture seasonal trends, while eosFD probes collected data every five minutes to track diurnal
445 fluctuations. The integration of these datasets for modelling temporal dynamics improved estimation

446 accuracy but might also introduce uncertainties into the model.

447 Anthony and Silver (2023) demonstrated that identifying hot moments of CO; flux in peatland requires
448 intensive continuous measurements, while as an alternative, our robust simulation of hourly CO; flux
449 enabled the identification of hot moments in a complex landscape. We found that most of these hot
450 moments occurred during the summer and early autumn seasons (Figure 3¢-3h), in agreement with our
451 in-situ observations (Figure 2c¢). The frequent high CO; emissions in June and July can be attributed to
452 the low precipitation, decreased soil moisture, and high temperatures (Figure 3a-3b). However, few hot
453 moments were captured during late July and early August due to the heavy rainfall events (Figure 3a).
454 This absence may be attributed to the fact that intense rainfall led to lower temperatures and increased
455 soil moisture (Figures 3a, 3b), thereby suppressing microbial and root respiration (Hoyt et al., 2019).
456 Following this period, CO, emissions reached values that exceeded the 'hot moments' threshold in mid-
457 August, aligning with declining rainfall and rising temperatures (Figures 3c-3h). The hot moments
458 observed in September are linked to seasonal fluctuations in precipitation and temperature (Figures

459  3a3b).

460 Similar to the findings of Anthony and Silver (2021) and Kannenberg et al. (2020), these hot moments
461 accounted for approximately 10 % throughout the year, while they contributed significantly to the annual
462 total CO, emissions (28 %-31 %; Table 3), highlighting the important role of short-term high-emission
463 events in the overall carbon emission. Therefore, missing hot moments may lead to significant
464 underestimates of total peat soil respiration budgets. Despite continuous automated chamber or eddy
465 covariance measurements that are ideal for capturing hot moments of CO» emissions (Anthony and Silver,
466 2023; Hoyt et al., 2019; Anthony and Silver, 2021), long-term continuous monitoring is still labor-

467 intensive and cost-prohibitive in many locations within the complex peatland ecosystems. Given that we
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468 observed a concentration of hot moments in the summer and autumn, we recommend increasing
469 monitoring frequency during these seasons for temperate peatlands. This strategy would help capture
470 carbon emission dynamics more effectively, reduce uncertainties in annual carbon flux estimates, and

471 provide more representative peatland CO, flux data.

472 4.2.2 Spatial analysis of CO: fluxes and hot spots

473 Our mapping of CO; flux across the landscape yielded a model performance of R?= 0.75 and RMSE =
474 0.54 pmol m? s for the test dataset (Table 2). This can be attributed to the incorporation of key
475 environmental factors that drive the spatiotemporal heterogeneity of soil respiration into the model inputs.
476 These factors — including soil temperature, corrected TWI, and SOC stock — can be directly obtained
477 through multi-sensor UAV remote sensing or estimated using high spatiotemporal resolution data.
478 Previous studies upscaled spatial carbon fluxes using area-weighted methods, extrapolating point data
479 from CO; chamber flux measurements to adjacent or larger areas based on land cover maps (Van
480 Giersbergen et al., 2024; Webster et al., 2008; Leon et al., 2014). However, this approach can lead to
481 over- or underestimation (Wangari et al., 2023; Leifeld and Menichetti, 2018), because our findings
482 reveal that even within the same vegetation cover, such as Molinia caerulea, CO, emissions exhibit
483 significant spatial-temporal variability (Figure 2b). In recent years, spatial upscaling of CO; fluxes has
484 increasingly relied on satellite-based remote sensing data (e.g., Junttila et al. (2021); Wangari et al. (2023);
485 Zhang et al. (2020); Azevedo et al. (2021); Huang et al. (2015). While this method covers larger areas,
486 it is often constrained by coarse temporal and spatial resolutions. The peatland ecosystem is characterized
487 by great temporal and spatial heterogeneity at small scales, and ignoring these variations can introduce
488 significant uncertainties in CO; emission estimates. Our study demonstrates that high-resolution UAV
489 remote sensing imagery, with fine temporal and spatial scales, could effectively upscale CO, fluxes from
490 point measurements across a heterogeneous landscape, thereby reducing uncertainties in spatial

491  predictions of CO; fluxes.

492 Furthermore, the high-resolution CO» flux maps allowed for the identification of hot spot areas across
493 the landscape. We found that most of the hot spots occurred at the shoulder areas where soil moisture
494 was relatively lower and to the east of the summit which is covered by dense vegetation (Figure 1b,

495 Figure 4f). Spatial variability in the factors controlling biogeochemical processes, such as soil
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496 temperature, moisture, water table depth, vegetation type, and substrate quality, is likely driving these
497 differences (Anthony and Silver, 2023; Kuzyakov and Blagodatskaya, 2015; Mcnamara et al., 2008). For
498 instance, the tree-covered areas at the summit contribute substantial root respiration, which may, in turn,
499 trigger the formation of consistent hot pots throughout the year. Besides, litterfall beneath trees insulates

500  the peat soil and provides an abundant resource for microbial activity.

501 High-emission events from hot spots play a crucial role in overall CO; fluxes (Anthony and Silver, 2023),
502 hence, neglecting these areas could lead to substantial underestimation of peatland carbon emissions. In
503 our study, although less than 10 % of area was identified as hot spots, their CO, flux contribution
504 accounted for nearly 20 % across the year (Figure 4). However, research specifically focusing on
505  peatland CO, emission hot spots remains limited (Anthony and Silver, 2023), despite increased
506 exploration of greenhouse gas emission hot spots in other ecosystems (e.g., agricultural field (Krichels
507 and Yang, 2019; Rey-Sanchez et al., 2022; Leifeld et al., 2020); wetland (Rey-Sanchez et al., 2022);
508 water-limited Mediterranean ecosystem (Leon et al., 2014); forest (Wangari et al., 2023)). Hence, to
509 improve the accuracy of CO: spatial budgeting for peatlands, there is a need for enhanced high-resolution
510 dynamic monitoring of hot spot areas (Becker et al., 2008). Our study demonstrates the great potential
511 of UAV technology for peatland hot spot identification and quantification, offering new insights into
512 studying soil respiration within heterogeneous ecosystems as well as optimizing peatland management

513 and CO; emission reduction strategies.

514
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515 5 Conclusion

516 In this study, we monitored the dynamics of peatland surface and subsurface environments using both
517 field surveys and multi-sensor UAVs at high spatial-temporal resolution. We investigated the influence
518 of dynamic and static environmental factors on soil respiration rates across different scales, thereby
519 enhancing our understanding of peatland carbon cycling. Additionally, we simulated CO; flux with high
520 spatial-temporal resolution by integrating field measurements and UAV data. These reliable modelling
521 allow us to identify and quantify CO, emission hot spots and hot moments across the landscape. To

522  summarize, the main findings of our study are as follows:

523 (1) Soil respiration rates vary significantly across space and time, influenced by both dynamic and
524 relatively static environmental factors at different scales. Temperature is the primary driver of CO; flux
525  variations, explaining 33 % CO. seasonal variability and 18 % spatial variability. Soil moisture
526 negatively affects both seasonal and spatial variations, accounting for 10 % - 11 % of the variance. Semi-
527 dynamic factors (i.e., NDVI and root biomass) contribute 19 % to seasonal variability and 24 % to spatial
528 variability. While relative static factors (i.e., the C/N and SOC stock) have little impact on the seasonal

529  COs flux variability, the contribution of the C/N ratio increases nearly 11 times for spatial variability.

530 (2) Predicting temporal series of hourly CO flux can be effectively achieved (test set: R’ = 0.74, RMSE
531 = 0.57 pmol m2 s™') by considering its relationship with key environmental variables such as air
532 temperature, soil temperature and soil moisture, all of which are relatively straightforward to monitor.
533 These reliable time series data provide a foundation for capturing respiration pulses occurring over short

534  periods, with hot moments primarily occurring in summer and early autumn.

535 (3) The UAV remote sensing data can yield robust spatial mapping of soil respiration rates across
536 heterogeneous landscapes, with RMSE and R’ values of 0.54 pmol m™ s~ and 0.75 in the test dataset,

537 respectively. These high-resolution CO; flux maps enable us to locate hot spots.

538 (4) Despite representing 10 % of time within one year, CO; fluxes from hot moments contribute 28 %-
539 31 % to the overall CO; flux budgets. Approximately 10 % areas are identified as hot spots, while
540  contributing 19.63 % £ 0.57 % of total CO: fluxes. The locations of high-frequency hot spots remain

541 consistent, while the locations of sporadic hot spots vary over time.
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